Energy Output from a Single Outer Hair Cell.
نویسنده
چکیده
Electromotility of outer hair cells (OHCs) has been extensively studied with in vitro experiments because of its physiological significance to the cochlear amplifier, which provides the exquisite sensitivity and frequency selectivity of the mammalian ear. However, these studies have been performed largely under load-free conditions or with static load, while these cells function in vivo in a dynamic environment, receiving electrical energy to enhance mechanical oscillation in the inner ear. This gap leaves uncertainties in addressing a key issue, how much mechanical energy an OHC provides. This study is an attempt of bridging the gap by introducing a simple one-dimensional model for electromotility of OHC in a dynamic environment. This model incorporates a feedback loop involving the receptor potential and the mechanical load on OHC, and leads to an analytical expression for the membrane capacitance, which explicitly describes the dependence on the elastic load, viscous drag, and the mass. The derived equation of motion was examined in a mass-less model system with realistic parameter values for OHC. It was found that viscous drag is more effective than elastic load in enhancing the receptor potential that drives the cell. For this reason, it is expected that OHCs are more effective in counteracting viscous drag than providing elastic energy to the system.
منابع مشابه
سلولهای بنیادی bulge فولیکول مو: منبعی جدید برای بازسازی پوست
Emergence and spread of various diseases in the past century have been associated with many problems for the health care providers. Now a days, with advancement of technology, new methods such as cell therapy, are available, efficient and successful in some clinical areas. To use any cell, it is necessary to identify its source, so herein, we reviewed the literature of a new source of adult ste...
متن کاملIntegration of outer hair cell activity in a one-dimensional cochlear model.
Recently, significant progress has been made in understanding the contribution of the mammalian cochlear outer hair cells (OHCs) to normal auditory signal processing. In the present paper an outer hair cell model is incorporated in a complete, time-domain, one-dimensional cochlear model. The two models control each other through cochlear partition movement and pressure. An OHC gain (gamma) is d...
متن کاملActuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells E . E . Herrera - Valencia
Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation ...
متن کاملSingle dose gamma irradiation induced angiogenesis in rat skin hair follicles
Background: Hair follicle cycling usually associated with prominent changes in skin vascularization; through follicular dermal papilla production of angiogenic factors. The early response of hair follicles to ionizing irradiation (IR) is induction of early anagen hair and appearance of new hair formation. Material and Method: Fifty rats were equally divided into 2 groups; control and γ-rays (10...
متن کاملOuter hair cell piezoelectricity: frequency response enhancement and resonance behavior.
Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 111 11 شماره
صفحات -
تاریخ انتشار 2016